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Abstract. We study the quantum mechanics of two-dimensional spaces of constant negative 
curvature. The connection between different formulations is analysed. We derive the 
propagator and find that in the semiclassical approximation, the time evolution of observ- 
ables exhibits similar features as in the classical case. 

1. Introduction 

In modern theories of particle physics, such as superstrings or supergravity, chiral 
matter fields invariably parametrise a curved Kahler manifold. Apart from perturbative 
treatments [ 11, little is known about the quantum behaviour of such field theories with 
non-minimal kinetic terms. In the one-dimensional case such systems correspond to 
the motion of particles in curved spaces. Quantum mechanics on curved spaces is still 
an open field with many unanswered questions. 

A typical example, and perhaps the simplest, is the case of an SU( 1, l ) /U(  1) space 
parametrised with a simple complex field. It is related to the dilaton and is contained 
in all N = 1 supergravity theories that appear in the local limit of compactified 
ten-dimensional or four-dimensional superstrings. The one-dimensional case of this 
field theory corresponds to a point particle moving in a two-dimensional space of 
constant negative curvature. In this paper we study the spectrum and compute the 
propagator that determines the evolution of amplitudes of such a system. In previous 
papers [2], where we studied the classical system and some of its cosmological 
implications, we noted the characteristic divergence of geodesics, a feature that is well 
known to be related to chaoticity. In the quantum case similar features emerge when 
we study the time evolution of expectation values on the full non-compact manifold. 

2. General considerations 

Consider an N-dimensional manifold viewed as a set of points in patchwise one-to-one 
correspondence with open subsets of the Euclidean space R N .  Let us denote the 
coordinates as #I', . . . , c,bN. We assume the existence of a smooth symmetric positive 
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3578 E N Argyres et a1 

definite metric gij(q5) in terms of which we define a line element, a connection and a 
curvature tensor as 

ds2 = g v ( $ )  d 4 i  d& 
ri =1 Im 

Jk 2g (ajgkm +akgjm -amgjk) 

Rikl= akr;, - alrfk + rLmrT - - r i m r ; .  

In the case N =  2 n ,  a set of n complex coordinates can be introduced as Z A  = qbA + i&A+n 
and zA = 2" = 4 ,  -i$A+n ( A  = 1, .  . . , n ) .  In a so-called Hermitian manifold there 
exists a preferred class of coordinate systems for which gAB=gAB=O and ds2=  
2gas d Z A  d Z B  = 2gf: d Z A  dzB.  In the special case in which 

the manifold is called a Kahler manifold and the real function G(Z,z) is called a 
Kahler potential. Chiral superfields coupled to N = 1 supergravity automatically span 
a Kahler manifold. For a Kahler manifold the only non-vanishing components of the 
connection are the unmixed ones r& and &. In addition we can show that 

rf:B = a, In( det g,a) 

which leads to 

RAE = - d , a ~  ln(det g,a) 

for the Ricci tensor RAE = R&. As an example of a Kahler manifold, consider the 
homogeneous space SU( n, l ) /SU( n )  x U( 1) with a Lagrangian 

defined in terms of the Kahler potential G = -In( 1 - k2ZAZA)/ k2.  It is easy to check 
that this is a space of constant negative curvature (see appendix 1 )  

R f : = - ( n  - l ) k 2 g f : .  (2 .2 )  

Consider now the simplest possible case of a point particle moving freely in a 
general Riemannian manifold with a line element ds2 = g, dq' dq'. From the 
Lagrangian 

we obtain the equations of motion 

$+rj,gJqk =o. (2 .4 )  

The distance travelled by the particle along a geodesic in a time interval [0, TI is 
obtained by substituting the solution of the equations of motion in 

r T  
D[q' (  T ) ,  q i ( 0 ) ]  = J dt(gvqiq' )1 '2 .  

0 
(2 .5)  

Since the energy is a constant of the motion D =  T m ,  and therefore the value of 
the classical action is connected to the geodesic distance through the formula 

S.[q '(T),q '(0)]=~oTdr~g,qiqJ=ET= D 2 / 2 T .  (2 .6 )  
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A Hamiltonian is defined in terms of the canonical momenta ri = gijq' as H =4g'rirj. 
To quantise such a system, we can either impose canonical commutation relations 
[ q i ,  rj] = ih8; or consider the Feynman path integral. In any case the definition of the 
Hilbert space must be made in terms of the inner product 

(2.7) 

where g=det(gi , )  appears in the invariant volume element d"q&. In the { q i }  
representation the momenta are represented by the operators 

Hermiticity is proven as follows: 

a 
(~,!/r~/,y)= -ih d k q g ' i 2 + * g - ' / 4 z  ( iP4x) 

= ( X I  Til +)* 

provided +*g1I2X vanishes at infinity. 
In the transition from the classical to the quantum Hamiltonian care should be 

taken of the operator ordering. With the usual midpoint definition of the Feynman 
path integral the various terms in the classical action correspond to Weyl-ordered 
operators on the Hilbert space. The relation between the differently ordered quantum 
Hamiltonians is not always simple. For example, the Laplacian operator, in terms of 
our representation of momenta, is 

For the simple Lagrangian L = f( q:+ q i ) / (  1 - q: - q:)2,  the extra terms reduce to a 
constant and the Hamiltonian is just the Weyl-ordered one 

h2  
H =S(l - q : - - q : ) p * ( l  -q : -  4:)  = -1 ( 1  - q:- q y  ($+$) (2.9) 

with 

(2.10) 

In a similar fashion one can write down the Hamiltonian formalism and proceed 
with the quantisation in the case of a Kahler manifold as well. Dynamics in any case 
is governed by the Hamiltonian in terms of the propagator 

G(q", q i ;  T) = (q' j l  exp(-iTH/h)lq'). (2.11) 
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3. Classical motion in two-dimensional spaces of constant negative curvature 

There are various models which are known to be equivalent descriptions of a two- 
dimensional space of constant negative curvature [3]. One can go from one to the 
other in terms of suitable coordinate transformations. An infinite two-dimensional 
surface of constant negative curvature can be thought as one sheet of a two-sheeted 
hyperboloid embedded in Minkowski space. A natural parametrisation of such a 
surface (a pseudosphere) can be given in terms of pseudospherical coordinates 0 < 6 < 
CO and 0 6  4 <21r. The line element on the pseudosphere is ds2 = (dO)’+sinh2 O(d4)2 
while the invariant volume element is d cosh O d4.  The Lagrangian of a free particle 
moving on the pseudosphere is 

L = f( b2 + sinh’ e&’),. (3.1) 

Another description of the same space can be obtained by introducing K = r exp(i4) = 
tanh(6/2) exp(i4). In this parametrisation (the Poincari disc) the Kahler property of 
the manifold is explicit and the line element is 

ds2 =4 d K  d K (  1 - K K ) - 2 =  4 [ ( d ~ ) ~ +  ( d ~ ) ~ ] ( l -  Y ~ ) - ~ .  

The geodesic distance of two points on the PoincarC disc is given by 

D[K, K’]=cosh-’[l+21K - K ‘ 1 2 ( 1 - K K ) - ’ ( 1 - K ‘ K ’ ) - ’ ] .  (3.2) 

(3.3) 

The corresponding formula in pseudospherical coordinates is 

D[6,4,  e’, 4’1 = cosh-’[cosh 6 cosh 0’-sinh O sinh 8’ cos(4 - 4’)l. 
The continuous symmetries of the PoincarC disc can be realised by 

K ‘ =  ( a K  + p ) / ( p ” K  + a*)  la12-Ip12=1 
which correspond to the pseudo-unitary group SU( 1 , l ) .  Another model describing 
the same space is the PoincarC complex half-plane, which is obtained through the 
change of variables 

5 = (1 - K ) / (  1 + K )  K = (1 - 5)/(1+ 5). 
Thelineelementis d s 2 = 4 d l  dc((5+f))-2=[(dx)2+(dy)2]x-2 ( - c o < ~ < c o ,  O < X < C O ) .  
The metric is again explicitly conformal. 

The geodesic distance is 

D ( f ;  5’) = cosh-’[ 1 +2lf - f’I2(l+ c)-’(l‘+ si)-’]. 

5’ = ( af - iP )/ (i  rC + fi ) 

(3.4) 

The symmetries are realised by the transformation 

af i -p7=1 

which again corresponds to SU(1, l )  or PSL(2, R ) .  
The classical equations of motion in pseudospherical coordinates are 

e - ;  sinh(2O)d = 0 (3.5) 

& sinh2 6 = L (3.6) 

where L is a constant of the motion. In addition, the energy is E =$(e2+ sinh2 6 6 ’ ) .  
The solutions of the equations of motion can be expressed as O =  
O(O(O) ,  +(O), d(O), d(0); t ) ,  4 = 4 ( 6 ( 0 ) ,  4(0), 6(0), d(0); t )  or in terms of the con- 
stants E and L as 6 = e(O(O) ,  4(0),  E, L; t )  4 = +(e (o ) ,  +(O), E, L; 2 ) .  
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They are explicitly 

cosh e( t )  = a cosh( tm+ b )  

3581 

(3.7) 
exp(2b + 2 t m ) +  (L’-2E)/(L2+2E) 

2 L m /  ( L2 + 2 L F )  
+ ( t ) =  +(O)+tan-’ 

exp(2b) + ( L2 - 2E)/  ( L2 + 2 E )  
-tan-’ 

where 

b=cosh-’( cosh a @(O) ). 
The form of the solutions in terms of PoincarC plane coordinates was given in [2]. 
Although e( t )  and C#J( t )  appear to describe a complicated motion, we are dealing with 
a free particle, and since the geodesic distance is 

a e ( t ) ,  d(t), + ( O ) l =  tm 
the corresponding equation for the geodesic distance will have the trivial form 

d2 
d t2  - m e ( t ) ,  4(tL e(o), 44011 =o. 

The phase space of the classical motion can be parametrised in various ways using 
suitable variables, which exhibit different geometrical aspects of the motion. In general, 
a classical trajectory could be fully parametrised by three quantities, for example e(O), 
8(0), $(O), (4(0) plays a trivial role). Equivalently, we could use the values of the 
conserved quantities of each model. In the PoincarC disc, three conserved quantities 
that represent the symmetry algebra are, in Cartesian PoincarC-disc coordinates, 

B * -1 - 2 ( 1 - x2 - y ’) My + Mx B2 = - i ( L  - x2y2)Mx + My 

M = XPy -YPx px=X/(l  -x2-y2)2 etc. 

These three constants satisfy the SU(1, l )  algebra 

(4, B21= -M 

H = f (B:+ B: - M2). 

{Ml Y B,) = B2 { M ,  8 2 )  = -B1. 
The Hamiltonian, being a Casimir of SU(1, l ) ,  is 

To have a description of the trajectories, we can express B1, B2 and M in terms of 
two angles ++, +- and the energy E as 

B~ = 2v‘Z cos i( ++ + +-)/sin f( 4+ - +-) 

B~ = 2 d E  sin f( 4+ + +-)/sin f( ++ - 4- )  
M = 2 L F  cot f( ++ - +-). 

The angle +- gives the angular location of a particle which, starting from the boundary 
of the PoincarC disc and moving on a geodesic with constant energy E, reaches again 
the boundary with an angular location ++. If we go to half-plane coordinates and 
put the point ++ at infinity, we find exponentially fast ( e x p ( - t m ) )  converging 
trajectories, while a slightest variation a++ results in exponentially (exp( tm)) 
separating trajectories as t + 00. As is usually said, the model exhibits hyperbolic flow, 
meaning roughly that the phase-space trajectories diverge. 
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4. Quantum mechanics in two-dimensional spaces of constant negative curvature 

The classical Hamiltonian describing a particle on the PoincarC disc is 

1 
2m 

H =- (1 - KR)’iin (4.1) 

in terms of the canonical momenta n = K/( 1 - KK)2, 71. = E/( 1 - KK)2. The quantum 
Hamiltonian is given by the operator 

a2 
(1 - KR)’- (4.2) f f = - ( i - ~ E ) ~ ~ ( i - -  KK)=-- 1 h2 

2m 2mR2 aKaK 

which is equal to the Weyl-ordered one up to a constant. The momenta are represented 
by 

ih a 
n= -- (1 - KK)- (1 - KR)-’ 

R aK 

- 1  ih  a 
R dK 

71. = -- (1 - KR): (1 - K K ) -  . 

On the other hand in the (0, 4} representation we have 

(4.3) 

(4.4) 

Here R is the radius of curvature of our space, so that all variables are dimensionless. 

($l,y)= d K  dK(1-KR)2$*(K,K),y(K, K ) = I l m d c o s h  0 [02‘d4$*(0, 4 ) ~ ( 0 , 4 ) .  

The energy spectrum can be obtained from the solution of the eigenvalue problem 

The Hilbert space is defined with an inner product 

(4.5) 
I 

a 2mR’ 
$ E ( O ,  4 )  = -F E ~ $ ~ ( O ,  4 ) .  (4.6) 

This equation is separable and has delta-function normalisable solutions [4] 

$ : ( O ,  4 )  = NT exp(im4)P{-,,,(cosh 0 )  (4.7) 
where m = 0, * l , ,  . , , *CO, 0 s  A c CC and = (A2+b)h2/2mR2. The functions PK-1/2 
are the conical functions [ 5 ] .  The energy eigenvalues form a continuum starting from 
E ~ =  h2/8mR2 and extending to infinity. The eigenfunctions 4:, describing the free 
particle on the entire pseudosphere, form a complete orthonormal set 

joEdA $:(e, 4)$:*(0‘,  +’)=S(+-+’)S(cosh 0-cosh 0’) (4.8) 
m = - x  

d cosh f3 {o’’ dr+ $?*( 0, 4)$::( 8, 4 )  = 6,mtS(A - A ’ )  (4.9) 

provided 

2 n  T(iA +$) 
N : = (  A tanh(.rrA) ) T(iA + m +;)’ (4.10) 
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The time evolution will be described by the propagator 

G(cosh 8,4, cosh e', 4'; t )  

r(iA+;) 
A t a n h ( d )  21T I T(iA + m +$) 

exp[im(+ - +')]Ps-l/2(cosh 8 )  = 2 jomdA 
m = - m  

x P~- ,12(cosh  e') exp[ - i ( A 2  +$) ht/2mR2]. (4.11) 

The summation over the angular momenta m can be performed (appendix 2) and we 
are led to 

G ( D ;  t )  Io" dA A tanh(l~A)P, , -~/~(cosh D) exp[-i(A2+a)Rt/2mR2] (4.12) 
21T 

where 

D = cosh-'[cosh e cosh 8'-sinh 8 sinh 8' cos( $I - +')I 
is the geodesic distance between the initial and final point on the pseudosphere. 

(4.13) 

The propagator solves the Schrodinger equation 

H - i -  G ( D ; t )  ( aaJ 

aD at  
h2  1 a 

2mR2 sinh D aD 

1 "  
=- dA A tanh(l~h)P,,- , /~(cosh D) 

2.rr 0 

x { -ihG(t) - [ ihO(t)( -%)(A2+:) 

( A  +$>I exp[-i( A ++) ht/2mR2 
R 2  

-8(t)- 
2mR2 

= -iAG(t)G(cosh @-cosh @')a(+-+'). (4.14) 

Here we used the property 

sinh a f(D(8, 4, e', 4') ) =- sinh 1 D - dD (sinh DS) ae 
and [ 5 ]  for the representation of the delta function in terms of conical functions. 

6( D ;  w )  = I-, d t  exp(iwt)G( D; t )  

1 "  

The Fourier transform of G(D;  t )  takes the form 
m 

=- j dA A tanh(nA)P,,-,,,(cosh D) d t  exp[iw -i(A2+a)ht/2mR2] 
2.rr 0 

CA-l,2(cosh Dl = lom dA A tanh( T A )  
21T w - ( h / 2  mR2) ( A  +$) + iE * 

(4.15) 
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fj2SC 62Sc 

S2Sc 
6 cosh e( T)S cosh e(0) 6 cosh e(  T)S4(O) 

S2S, 
det 

where Q is the conical function of the second kind, which although a solution of the 
time-independent Schrodinger equation, is not an eigenfunction since it is not normalis- 
able on the entire pseudosphere, (4.15) becomes 

1 D 
T 2  sinh D 

--- - 

- Qifi-I/*(COSh D )  - Q-iv~-1/2(cosh D )  -$!" 857 h dx( x - f ( w )  - i E  x-f(w)-iE 

where 

f ( w )  =2mR2(w-h/8mR2) /h .  

Using the asymptotic forms 

Q i f i - 1 / 2 ( ~ ~ ~ h  D )  - x-'l4 e x p ( - i D h )  

Q - i f i . - 1 , , 2 ( ~ ~ ~ h  D )  = [ Q i ~ - 1 / 2 ( ~ ~ ~ h  D)]* - x - " ~  exp(iD&) 

X-03 

x-m 

and going to the complex x plane, we find that the first integral is zero (by closing the 
contour in the lower half-plane) whereas the second integral (by closing the contour 
in the upper half-plane) gives 

(4.16) 

Notice that the Fourier transform 6 has a branch point at wb = h/8mR2, implying 
that the energy spectrum is continuous with a lower bound E,,, = hwb = h2/8mR2, in 
agreement with the eigenvalues of the Schrodinger equation. 

In terms of the propagator G ( D ;  t )  the time evolution of states can be written as 

(L( e, 4, t )  = lIm d cosh 8' (4.17) 

Equivalently, time evolution could be studied in the Heisenberg picture starting 
from the Heisenberg equations of motion, which, however, are rather difficult to solve. 

The classical action between two configurations q ' (  T )  and q ' ( 0 )  is given for a free 
particle in terms of the geodesic distance 

d 4 '  G ( D (  8, 4 ;  e', 4'; t))rL( e', 4';  0). 

Sc[q ' (  TI ,  q1(0)1 = D2[q'(  TI ,  q i (O)1/2T.  

In the semiclassical approximation, the propagator is given by 

G(q'(7-L q ' (0) ;  T )  

In our case, we compute 
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which gives 

The power of the time factor in front reveals the dimensionality of the system. 

equation (4.14) and compare powers in h :  
In order to estimate higher orders in h, we can substitute G( D;  T) in the Schrodinger 

h2 1 d 

2mR2 sinh D aD 

mR2 1 ( D ) ” 2  
(imR2D2)[1+ 

27rih T sinh D 2hT  x-- - exp - i h TF( D)/ mR2] = 0 

where F (  D) is an unknown function to be determined. It is important to keep in mind 
that the small-h approximation is a large-distance approximation and should not be 
valid at small D. The order-h correction can be obtained as 

plus, of course, other terms of order h2. 
The semiclassical propagator falls off at large distance exponentially like 

1 
- a e x p ( - D / 2 )  ( l-- 4TR2 T) exp(imR2D2/2hT) 
T 

in contrast to a particle on a plane, which propagates with (1/ T) exp(imR2D2/2hT). 
The semiclassical approximation to the propagator can also be obtained from the 

integral expression of the conical function [ 5 ] :  

a 
P i h - 1 / 2 ( ~ ~ ~ h  D )  =- coth(7rA) du sin(hu)(cosh U -cosh D)-’” 

7T 

Substituting this expression in the integral form of the propagator, (4.12), we get 

du(cosh u-cosh D)-”2 dh A sin(hu) exp(-i&,t/A) 

e ( t )  &( iht  )-3’2/1 
a r ’  4 2mR2 

xexp( --) mR2u2 exp( -2). 
du u(cosh U -cosh D)-1’2 =-- - 

2iht (4.19) 

With the change of variables U = w 2 +  D, the integral becomes 

I =exp(-mR2D2/2iht) do(”’+ D)( cosh D S  sinh(w’) sinh D)-”’ 
cosh(w2) - 1 m 

o2 6 J 2  

m 

= exp(imR2D2/2ht) d o  f ( w )  exp(-mR2w2D/iht). 
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Expanding f ( w )  =f(O) +f’(O)w +. . . and noticing that f(0) = D / V ”  we obtain 
CO D 

I = e x p ( i m ~ ~ ~ ~ / 2 h t )  dw exp(-mR2Dw2/iht)+itO(h) (1 4- 
Thus 

x exp(-iht/8mR2) exp(imR2D2/2ht)(l +i tO(h))  (4.20) 

which agrees with the result of the semiclassical formula apart from the zero-point 
energy term which, in any case, to this order is unity. 

A test of how good an approximation this is to the exact propagator is provided 
by a comparison of (4.20) with (4.19), the latter being evaluated numerically to any 
degree of accuracy desired. Introducing the dimensionless Euclidean time 

7 = i h t / 2 m R 2 = i i  

the exact propagator, (4.19), can be written as 

G ( D ;  T )  = (2.rr)-3/2 

x e x p ( - ~ / 4 ) ~ - ~ ’ ~ $  J du u exp(-u2/4~)(cosh u -cosh D)-* l2  
D 

= ( 2 ~ ) - ~ ’ ~  ~ x P ( - T / ~ ) T - ~ ’ ~  du(cosh U -cosh D)’l2 I: 
U coth U - 1 +- exp( - u 2 / 4 ~ )  

sinh u 
X 

by integration by parts. The integrand of the above expression is a smooth function 
of U which vanishes at the lower and upper bounds and can thus be calculated 
numerically to any degree of accuracy. 

The result of this calculation Gexact(D; T ) ( ~ T ) ~ ’ ~  e x p ( ~ / 4 ) ~ ~ ’ ~  is shown in figure 1 
(full curve) together with the semiclassical approximation (broken curve) as a function 
of D for different values of T. We observe that for T S  1, the classical approximation 

fails progressively more and more as T increases ( T >> 1) and D/&< 1. For example, 
for T = 10’ it fails for D < 10 by a factor of 2-4. 

A more direct way of obtaining the propagator is by making use of the Mehler-Fock 
transform. Consider the Schrodinger equation for G(D, t )  (equation (4.14)). Take 
the Mehler-Fock transform [3] in D and the Fourier transform in t, i.e. 

is very good for all D. It is also very good for any D and T such that D/&.- ’I. It 

X 

G ( D ;  t )  = dA A t a n h ( ~ A ) P - ~ ~ ~ + ~ ~ ( c o s h  D )  d o  exp(iwt)G(A, w )  Id 
and 

8(t)b(cosh 6-cosh 0‘)8(4-+’) 

1 1 ”  
dA A tanh(~A)P-,/2+i,(cosh D )  1 dw exp(iot). 

7 --3o 
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0 

Figure 1. The exact (equation (4.19), full curve) and the semiclassical (equation (4.20), 
broken curve) propagators as functions of D for different values of r ;  for T = the two 
cannot be distinguished in this scale. 

Then 

( H - i h d / d t ) G ( D ;  t )  
s. 

= los.dA A tanh(.rrA) 1 dw exp(iwt)@A, w)[H-ih(iw)]P-llz+,, 
--cc 

a: ih - - - - jOm dA A tanh(.rrA) dw exp(iwf)P-l/Z+iA. 

Using the fact that [2] 

where EA = ( A 2 + $ ) h 2 / 2 m R ’ ,  we obtain 

ih  1 

H p - l / Z + i A  = EAP-1/2+iA 

G(A, w )  = -- 
( 2 ~ ) ’  fiw + E~ - i E  ’ 
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The ie prescription follows from the fact that 

=-exp(-ieAt/h)B(t) 

so that G obeys the causality condition. We thus obtain 

dh A tanh(~h)pl,,-,~,(cosh D )  exp(-is,t/h) 
2 T  

which is (4.12), since e A / h  = (A2+a)h/2mR2. If we now use the addition formula for 
the P (appendix 2) in (4.12) and compare the resulting expression with (4.11) for G, 
we conclude immediately that the normalised energy eigenfunctions are those given 
by (4.7). 

We carry out next the quantisation in the Poincar6 half-plane in order to compare 
the results with those obtained on the pseudosphere. In half-plane variables the 
classical Lagrangian is 

L, = imR2(x2 + y2) /x2  (4.21) 

leading to the classical Hamiltonian 

H, = (1/2mR2)x2(p:+p:). 

Using 

0 
X2 

1 
0 -  

X2 

1 - 

gij = 

we get the following representation of the momentum operators: 

a 
px = -ifi(:-:) py = -ih--. 

dY 

So that the time-independent Schrodinger equation becomes 

Letting 

44x9 Y )  = exP(i~Y)x”2g(x) 

we obtain an equation for g(x):  

x2g”+ x g ’ -  [k2x2 - (2mR2/ h 2 ) E  +a]g = 0. 

Letting 

2mR2 
P = [ 7 ( E  -&)I 

the equation becomes 

x2g”+ xg’ - [ k2x2 + ( i ~ ) ~ ] g  = 0. 

(4.22) 

(4.23) 

(4.24) 

(4.25) 
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This is the modified Bessel equation, which has solutions for any real p, i.e. E 2 
h2/8mR2. The normalised solution is 

(4.26) 

Since x ' / ~ K ~ , ( x )  -+x+,3c 0, the value k = 0 is excluded. 
We see then that in the PoincarC half-plane quantisation gives the same energy 

spectrum, but both quantum numbers are now continuous, in contrast to the pseudo- 
sphere case where m is integer. The same results have been obtained by the path 
integral method [ 6 ] .  

5. Expectation values and time evolution 

Wavefunctions describing the system under study can be expressed as a superposition 
of energy eigenfunctions 

T(iA +f) 
m=-m 271. T(iA + m +f) 
x e ~ p ( i m 4 ) P ~ - , , ~ ( c o s h  0) .  

The coefficients C,(A) are expressible in terms of @(e, 4 )  as 

A tanh( T A  ) 
2r r  C,(A) = ( ) Ilm d cosh 0 Io2r d 4  exp(-im+)Bz?:/, (cosh e)$ (e ,  4 ) .  

In the case of a &independent wavefunction, the coefficients can have only m = 0. 
Setting C,(A) = S,,C(h), a general q5 independent wavefunction can be written as a 
Mehler-Fock transformation 

(5 .2 )  

It is also possible to consider wavefunctions depending on the geodesic distance from 
a fixed centre eo, 4,. A specific choice of coefficients 

r(iA + m +f) 
T(iA +f) Cm(A) = (?(A)(-1)" exp( - i m ~ o ) P ~ ? , ~ 2 ( c o s h  0,) 

with the help of the Mehler addition formula (appendix 2 )  gives 

A tanh( T A )  - ' I 2  
$(cosh D )  = lom dA C(A)( 271. ) ~A-, /2(COsh D )  (5.3) 

with 

cosh D = cosh 8 cosh eo-sinh eo cos(4 - 4,). 

distance from a fixed centre. For example, let us consider 
A family of localised wavefunctions is given by Gaussian functions of the geodesic 

(5.4) 
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The time-evolved wavefunction will be given by 

$(D(O, 4 ;  @ 0 , 4 0 ) ;  t )  

r“0 r 257 
d cosh 8’ J d 4 ’  G(D(8,  4; e’, 4 ’ ) ;  t)$(D(8’, 4’; Bo, Cpo); 0) ( 5 . 5 )  

= J, 0 

It is easy to prove that 

= lom d cosh O3 d 4 3  G( DI3 ; 7 1  - 73)G(D32; 7 3  - 7 2 ) .  ( 5 . 6 )  

Using the semiclassical expression, (4.18), for the propagator in the above equation, 
we get 

For 73 = 0 and 72 = - a / 2  this gives 

which means that (see equation ( 5 . 5 ) )  

$(D; 7) = $(e, 4, 0 0 , 4 0 ;  t )  

- ’ ( )li2exp(8;/2a) e x p [ - D 2 / 2 a ( 1 + 2 ~ / a ) ]  a + 2 7 =  s i n h D  
- 

f f  - - 

Since (I)( D ;  ?)I$( D ;  f ) )  = exp( 8;?’/a( 1 + f2 ) ) ,  normalisation is not quite preserved 
for ~ > > l  in this approximation, unless eo is very small. Expectation values of 
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D-dependent observables are readily computed. For instance, we find 

($(D; i)lDl!b(0; 0) 
= eo exp(e;/a j exp[-&/(a'+ ?')I 

($(D; ? ) /D2/$(D;  i ) ) = e x p ( 8 ; / a ) e x p [ - 8 ; a / ( a 2 +  f2) ]  e;+- ( a 2 : i 2 ) .  

For t >> 1 we have 

( 0 2 ) i 5 -  1 ;*=- 1 - f i 2 t 2  

a a 4m2R4 

 AD)^=- 1 ( I--  4"> ?*=- ; ( "> - h2t2 
a 4 4m2R4' 

We see that (0); grows linearly with time just as in the classical problem where 
D( t )  = tm. 

It is interesting to also study the time evolution of the position operators 0 and 4 
or the Poincart-plane ones 

5R=( l+&/2=(cosh  6-sinh 6 cos 4j-l 
Jl=(S-[)/2i=-sin4(coth ~ + C O S ~ ) - ' .  

Considering a Gaussian state, properly normalised for ?>> 1, 

exp[ - D2/2( a + i ?)I 

we get 

x exp[-aD2/(a2+ i2)](cosh 8 -sinh 0 cos +)-' 

a 1  D (51);= -; Iom d cosh 0 jo257 d4- sinh D 
xexp[-crD2/(a2+ ?')I sin +(coth e+cos + ) - I .  

The simplest special case one can think of is the case that the wavefunction is centred 
at eo= dO=O. In that case the 4 dependence disappears and we get 

( 5  ) i - e j o m d O B  - a  + i 2  ]0257d4 exp[-ae2/(a2+ i2)](cosh 0-sinh @cos  

2a  i>> 1 
=- lom d e  0 exp[-ae2/(cu2+ ?*)I = 1 

CY2+ T 2  
and 
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It can actually be proven that (lR)i= 1 and ( l l ) i = O  for any +-independent 
wavefunction. 

In order to see what happens for &dependent wavefunctions let us consider the 
limiting case of Gaussian wavefunctions centred at infinity (i.e. 4o = 0, Bo + CO). Then 

and 
cosh DE; exp( Oo)(cosh 6 - sinh 0 cos 4 )  

( l d ; = m  a /  77 l I x d  cosh 6 ~ 0 2 T d 4 ~ e x p [ - a D 2 / ( a 2 +  D i2)](2 cosh D exp(-B,))-’ 

D - - exp[ -aD2/( a2 + ?’)I 

where we used appendix 3. Let A = [a/(o’+ f’)] and, since eo >> 2, we obtain 

exp( -A2D2) 
D 

(lR)i=exp(Bo)A2 dD- jox cosh D 

= 2 exp( Bo)A2 lox d D  D exp( D )  exp( -A2D2) 

= 2 exp( 0,) exp( 1/4A2) 
m 

dx(x-iA) exp(-x2) I,,,+ 1/2A 

= exp(eo) exp(1/4A2) { exp [ - ( Aeo+- ~ A ) 2 ] - ~ e r f c ( A B , t ~ ) } .  

Assuming we can extrapolate to large times and using the asymptotic form of erfc: 

2 [ 212 (:.)I 1 
erfc(z) + -exp(-z ) 1--+0 - 

Z+m ZJ;; 

we see that time dependence persists, namely 

Thus we see that in the +dependent case (lR) depends on time, going to zero as t +- CO, 

in contrast to the case of the +independent wavefunction, where (lR)i+ 1. This 
situation is, of course, analogous to the classical behaviour [2]. Thus we can conclude 
that motion in the semiclassical approximation does not deviate qualitatively from the 
classical motion. 

(5R) i /( lR)O a ’/ ( + + O( ( T4)* 

Appendix 1 

As an example of a space of constant negative curvature consider the 
with G = -( 1/ K 2 )  In( 1 - K2ZAZA) (A = 1, . . . , n ) .  The metric is 

Kahler manifold 

a2 1 Z A P  
g + -  d Z A d Z B  G =  1 - K ’ZAZA ( S : f K 2 1 - K  2 z A - )  

Then 
1 

1 - K’Z.  Z [ det g z  = exp Tr In 

=exp[-nln( l -K’ZZ)+Tr 2 - 1 ( Z A Z B ) ’  

v = l  Y (1 - K’ZZ)” 
=exp[-n ln(1- K2Z2) - ln ( l -  K’ZZ)]. 
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Therefore 

det g :  = (1 - K2,&-("+') .  

Finally the curvature will be 

In( 1 - K2ZZ)-("+1) a a  
azA aZB 

RB - -~ - 
A -  

= -K2(n+ 1)g:. 

Appendix 2 

The functions B;""(z) form the canonical basis for the irreducible representations of 
the group SL(2, C) and can be viewed as playing the same role for the group SU(1,l) .  
A convenient representation, which can serve as a definition for the functions B;""(z), 
is 

where r is the unit circle prescribed positively, m and n are integers and 1 can be 
complex (typically of the form 1 = kip -f, p > 0). The generating function of the B;"" 
is 

a2 

B;""(cosh e )  exp(-im+) 

= exp( -in+) cosh 

m=-a2 

( 
In the case n = 0, we have 

m 

e e 
2 -+ exp( i4) sinh !) 2 ""(cosh :+ exp( - 4 )  sinh 

BT;-,,,(cosh e )  exp( -im+) = (cosh 8 + sinh 8 cos 4)*iA-"2, 
m = - m  

The following properties are useful 

B;""(cosh 0 )  = B;m3-n(cosh e )  
B;""(cosh e )  = (-l)"-"B?~-,(cosh 0 )  

[By"(cosh e) ] *  = B$"(cosh e) .  
The Legendre functions P;"(z)  with 1 = i A  -f are called conical functions and are 

related to Bz!1/2 through 

T(iA +f) 
Bz:,,,(cosh e )  = P~-, , , (cosh e) .  T(iA + m +f) 

The orthogonality relation 
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enables us to prove orthonormality for the energy eigenfunctions I)Y( 0, 4 ) .  Indeed, 

j l m d  cosh 0 IoZT d 4  CL", 4)CLh"(R #I  

T(-iA + m +$) T(iA'+ m +$) 
T(-iA +$) r(iA'+;) 

= 27rNfm N:.'S,,. 

provided 

27r l i2  T(iA+b) 
N;'=(  A tanh T A  ) T(iA + m +i)' 

On the other hand, the propagator contains the sum over angular momenta 

r(-iA +f) r(iA +&I 
T(-iA + m +;) T(iA - m +&) m = l  

1 x Ps-l/2(cosh 6)P,"_,lz(cosh e') 

T(iA +j) T(-iA +f) 
T(iA + m +;) T(-ih - m ++) m = l  

1 m  

3 n cosh( T A )  exp[im( 4 - 4') J 
sin-'(-i?rA + m7rS 5712) 

exp[ -im( 4 - 4')] 
sin-'(irrh + rrm + 7r/2) 

+ 

= flA-l/Z(COSh e)e,-1,2(COSh e') 
cc 

+ 2  (-1lm cos[m(4 - ~ ' ) ] P ~ - l i , ( c o ~ h  B)P;"_,/,(cosh e') 
m = l  

= qA-l/Z(COSh e) 
where the last step is the Mehler addition formula with 

cosh $=cosh 0 cosh e'-sinh 0 sinh e'cos(4 -4'). 

Finally, the following formula holds: 

jowdA A tanh(nh)&-,/,(cosh 8)=2rrS(cosh e-cosh @')8(4-4') 
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which is equivalent to the statement 

G(D;  0) = G(c0sh O-cosh O ’ ) S ( $  -4’). 

Most of these formulae can be found in [5]. 

Appendix 3 

A useful property is that 

J = d cosh 0 lo2- d$f( D )  = 27r [* d cosh D f ( D ) .  
cosh Bo 

The proof proceeds as follows: 

J = I m  dcoshDf(D)  [02TdQdCOShD. a cosh e 
cosh eo 

The Jacobian is 

3595 

 COS(^ - 4 0 ) J G [ ~ o ~ 2 ( 4  - 4,)~s:- 1)+ T’- 
(Si - 1) cos2(4 - 40) - 6: 

where 

$=cosh D 6 = cosh 8 to = cosh Bo.  

Differentiating, we get 

-- a t  [ - 5 0 * F c o s ( 4 - 4 0 ) J ~ ~ c o s ~ ( 4 - 4 0 ) ( 5 : - 1 ) + 1 2 - 6 i ) 1 - ” ~  
a t -  [ ( S i - l )  co~2(4 -40~-6 : l  

Performing the integration over 4 we obtain zero for the second term and for the first 
we obtain 

= -cosh eo jo2r d 4  
sinh’ Bo cos2 4 - cosh2 0 

- jOzr sinh Bo cos 4 +cosh eo sinh eo cos 4 -cosh eo 
d 4  

2 sinh eo [ jO2- cos 4 - coth eo - lo2’ cos 4 + coth Bo 

2 sinh Bo coth Bo [ Io2- 1 - tanh Bo cos 4 

“ - _ -  

1 + tanh eo cos 4 
1 - - -  

1 47r 

2 cosh Bo 41 - tanh2 eo 
- - 

= 27r. 
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Therefore 

m 

= 2 7 i j  dcoshDf(D). 
cosh 00 
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